
 
 

Cardiff University 

School of Computer Science and Informatics 

BSc Computer Science (UFBSCMSA) 
 

CM3203 - Final Report 

Building a Prototype to Track Eye Gaze 

 

Author: Gagandeep Malhotra 

Supervisor: Yukun Lai 

Moderator: Richard Booth 

Date of Completion: 07/05/2023 



Abstract 

2 
 

Abstract 

Eye contact is an important form of communication between people, which can convey where 

people’s attention lies and their emotions. These qualities struggle to extend to online 

interactions between people so eye gaze tracking can be used to retain this information as 

best as possible in a virtual environment. Recognising where people's attention is directed 

through eye gaze tracking can be useful for many applications, such as more natural human 

robot interaction, improving communication in virtual reality, and as a unique and intuitive 

input device.  

This dissertation uses image processing (facial landmark detection) and machine learning 

techniques (Regression Convolutional Neural Network) to track eye gaze, using only a basic 

webcam. As well as displaying this information, the eye gaze direction is converted into a 

corresponding screen-coordinate using a linear regression model, which is then used to 

control the cursor’s position in real-time, as well as interact with a computer with left and 

right clicks, using only eye movements.  

Furthermore, this dissertation further exemplifies that eye gaze tracking has the capabilities to 

be used as an intuitive tool to navigate a computer without the need of traditional hardware 

such as a mouse. Such a tool is extremely helpful for people with physical disabilities and 

those who otherwise struggle with traditional input devices. This problem of mapping a 

user’s eye gaze using a single webcam camera is a difficult challenge due to the many factors 

affecting this determination, including low camera/facial clarity, and a large variation in 

people’s pupil size and eye shape. This project will highlight the effectiveness of a machine 

learning approach to solve this problem and the choices made to determine the most accurate 

estimations for the eye gaze direction.  
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1. Introduction 

1.1 Project Description 
Eye contact is an important form of communication between humans, which can convey 

where people’s attention lies as well as their emotions (Itier & Batty, 2009). These qualities 

struggle to extend to online interactions between people so eye gaze tracking can be used to 

retain this information as best as possible in a virtual environment. Eye gaze tracking 

estimates where a subject is looking using identifiable features such as face, eyes and pupils. 

These features can be detected by implementing infrared cameras or a head-mounted eye 

tracking device, and used to determine a user’s eye gaze direction extremely accurately.  

However, these devices can be expensive, cumbersome to use, and seen as overly intrusive so 

have not been adopted by many. A method of eye gaze tracking without this barrier of entry, 

one which only utilises already existing hardware would be ideal for the mass adoption in 

forms of online communication. Therefore, this application only requires the user to have a 

normal webcam with their Microsoft Windows (2022) device, meaning this technology is 

accessible for a great deal more people. Eye gaze estimation is the process of predicting 

where a person’s attention is directed towards using the current, size, shape, and direction of 

their facial and eye features (iris and pupil).  There are many ways to refer to eye gaze 

tracking and there is an important distinction between this and just eye tracking. Gaze 

estimation concerns the reconstruction of the line of sight, and leverages different kinds of 

information (head pose, face geometry, and eye geometry) to achieve this estimation, eye 

tracking instead refers to analysing how the eye or its parts change their positions over time, 

which may be used to determine the eye gaze tracking estimation (Cazzato et al 2020). 

 

 

Figure 1: Representation of Eye Gaze Tracking in Different Environments (Cazzato et al 2020). 

 

In this dissertation, using Python a basic webcam is utilized to track eye gaze by employing 

facial landmark detection (image processing) and machine learning techniques (Regression 

Convolutional Neural Network (RCNN)). Additionally, a linear regression model is used to 

convert the eye gaze direction into a corresponding screen-coordinate, enabling real-time 

control of the cursor's position and interaction with a computer via left and right clicks 

through eye movements. The user can view their current and past predicted eye gaze vectors 

in the GUI for this program as well as a visual aid showing the live eye gaze direction from 

the user’s eyes from the webcam feed. This GUI is intuitive and gives detailed information 



Introduction 

8 
 

and instructions on how to correctly calibrate and use the eye gaze tracking/mouse movement 

application. 

Moreover, this dissertation demonstrates that eye gaze tracking has the potential to serve as 

an intuitive means of navigating a computer. Such an approach would be particularly 

advantageous for individuals with physical disabilities or those who experience difficulties 

using traditional input devices like a computer mouse. However, the task of accurately 

mapping a user's eye gaze using a single webcam camera poses significant challenges, 

including poor camera or facial clarity and considerable variations in pupil size and eye shape 

between users. This project will highlight the effectiveness of a machine learning approach to 

solve this problem and the choices made to determine the most accurate estimations for the 

eye gaze direction. 

 

1.2 Project Aim 
The primary motivation of this project is to build a robust prototype that can track eye gaze 

effectively with just a webcam using machine learning techniques. Furthermore, this project 

demonstrates that eye gaze tracking can be utilised in many ways, specifically showcasing the 

potential as an input device to navigate a computer. The detailed objectives within this 

overarching goal were to ‘use machine learning methods such as Convolutional Neural 

Network (CNN) to determine the eye gaze of a user’. Another specific objective is that ‘The 

eye gaze determination will only require a camera from the user which has a reasonable view 

of their face and eyes’. In addition to this, another objective is that the eye gaze tracking 

information will be utilised ‘in the form of an application which allows the user to navigate 

their computer using their eye gaze information, where traditional inputs from the mouse 

would be instead be converted into inputs from the user’s eyes’. This dissertation was 

designed from the beginning to be functional on devices using Microsoft Windows as an 

operating system as well as include a simple GUI interface for the user to interact with the 

program with. This dissertation builds beyond the ideas used to create applications with 

similar function, such as ‘GazePointer’ (2016), by utilising unique image processing 

techniques and a RCNN/Linear Regression model, as well as displaying wider array of 

detailed parameters to the user. 

 

1.3 Project Audience 
There are many different audiences which would find this dissertation useful both in terms of 

how the eye gaze tracking technology is implemented as well as the outcome of the project 

itself. For example, researches in the field of human computer interaction are demonstrated 

how eye gaze tracking can be used to benefit users who would want to navigate an electronic 

device more intuitively than other forms of input devices (Zander et al. 2010). These users 

include anyone from the general public, utilising this tool in online video meeting 

environments to show others where their attention is directed. This program is also beneficial 

to people who simply prefer using a hands-free method of human computer interaction for its 

comfortable usage. In addition to this, the implementation of moving the mouse cursor and 

navigating a device using eyes has tremendous potential in allowing disabled people a new 

form of hands-free communication (Solska and Kocejko 2022) and allows them to interact 

with people online. Eye gaze tracking technology from webcam can also be a great asset to 
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medical professionals who conduct consultations to detect conditions in patients such as 

autism, schizophrenia, and brain injury based on patterns detected in eye gaze movements 

(Shishido et al 2019). 

 

1.4 Project Scope 
The project specifically focuses on developing an image processing and machine learning-

based eye gaze tracking system, using a basic webcam, with the ability of human computer 

interaction using the eye gaze values. Within the scope of this project is to develop a system 

that can accurately track eye gaze and convert it into corresponding screen-coordinates for 

controlling the cursor's position and interacting with a computer using only eye movements. 

Importantly, this dissertation demonstrates the potential of eye gaze tracking as an intuitive 

tool for navigating a computer without traditional hardware such as a mouse, particularly for 

people with physical disabilities or those who struggle with traditional input devices. In 

addition to this, this project acknowledges the challenges associated with eye gaze tracking 

using a single webcam camera and highlights the effectiveness of a machine learning 

approach to solve this problem. The calculation of the eye gaze coordinates and 

corresponding screen coordinate does not go beyond using image processing and machine 

learning techniques and does not cover using other methods such as geometric calculations or 

3D modelling of eye region. Also, this dissertation does not develop a system for methods of 

improving communication in virtual reality or extensively evaluate the eyes as an input 

device against other forms of input devices. 

 

1.5 Approach used in Project 
The beginning of the creation of this project consisted of in-depth research about the subject 

area of eye-gaze tracking and how viable the brief was in being met under the time frame 

given, as well as if the intended approach was feasible. During the formation of the initial 

plan, a weekly plan was made that would detail the steps taken during week 1 to week 12 of 

the spring term in which the project was made. Along with informative weekly meetings with 

Professor Yukun Lai, the weekly plan was followed precisely to ensure that all milestones are 

met on time and to a high standard of quality. Once the machine learning methods to use 

were chosen based on past studies in this field, such as choosing to implement a linear 

regression model for optimal calibration efficiency (Gudi et al.2020), an evaluation of many 

databases with eye images and their corresponding look vectors was carried out. SynthesEyes 

(Wood et al. 2020) was chosen as the training database because it acknowledges the 

challenges involved in mapping a user's eye gaze using a single webcam camera, including 

factors such as low camera/facial clarity, and variation in people's pupil size and eye shape. 

The sheer number of eye images of different eye shapes and types (11,382) compounded with 

the precise associated coordinates of landmarks and three-dimensional eye gaze vector made 

this the ideal database to utilise. SynthesEyes also boasts a 90o of gaze variation which gives 

a large enough range to predict the gaze vector with 

After the completion of the functionality of the program and once ensuring that all the 

individual elements were working correctly, the GUI of the project was created to call the 

functions made earlier. The user interface was made with a novice user in mind by including 

a single-menu interface which ensured that it was easy to navigate, with a plethora of 
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information and instructions displayed clearly to the user. From the beginning the project was 

planned to be written in python intended only for Microsoft Windows devices with a normal 

webcam attached. 

 

 

Figure 2: Demonstration of SynthesEyes Database Images and their Collection Methods (Wood et 

al. 2020) 

 

1.6 Assumptions of the Project  
A variety of assumptions are made both about the user and the system at the creation of this 

project. A salient assumption made is that the user has at least one functioning eye which has 

a clearly detectable pupil, as well as full motor control to indicate where they are looking at. 

Furthermore, this program assumes that the user has the hardware of a Microsoft Windows 

device, as well as an attached webcam, which is powerful enough to run this program which 

aims for 30 samples per seconds. Additionally, the entire program is written in English and 

relies on the user to follow calibration instructions correctly in order to have an accurate 

mouse cursor coordinate calculated. Moreover, the user will also need access to a keyboard to 

input the escape sequence of ‘shift & F5’ to exit the program if for any reason they cannot 

control the mouse correctly. Further assumptions are made at the beginning of the project that 

the two machine learning models that are used, will be accurate enough for the user to 

navigate their device with. 

 

1.7 Summary of Important Outcomes 
Several important outcomes are achieved through the creation of this dissertation for an eye 

gaze tracker with human computer interaction capabilities. Namely, clearly demonstrating 

that the unique machine learning model used is an effective method in which to track eye 

gaze from just a regular webcam. Also, showcasing the outstanding capabilities of using eyes 

as an input device with intuitive controls, as well as how to convert eye gaze into a mouse 

cursor coordinate and evaluating the different calibration techniques utilised in this project. 

The mapping of a user's eye gaze using a single webcam is a difficult challenge, but the 
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approach used in this project is effective in solving this problem and determining accurate 

estimations for the eye gaze direction. 
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2. Background 

2.1 Wider Context of Project 
Eye contact plays an important role in social interaction and has the ability to capture and 

hold attention (Song et al. 2021). Through in-person interaction, eyes are commonly used to 

establish rapport between people, convey emotions, and effectively communicate with others. 

However, in online environments, it is found that the purposes of eye contact above are 

somewhat lost as they only occur with mutual, live eye contact and not in response to direct 

gaze pictures or when the observer believes that the live person cannot see them (Hietanen et 

al. 2020). Even in online video meetings, Ruth Wong (2020) found that relatedness (refers to 

an individual’s desire and need to connect and create a bondage with people) was not present 

in online learning environments. Online live video environments, although they may show a 

broadcast of another person, it is not sufficient enough to replicate the communications and 

emotions expressed in-person. Several reasons for this include low quality of camera and 

therefore low facial/eye clarity, as well as the inability to see where someone’s attention is 

directed through online videos. Since webcams, which display a video feed of the person on 

the other end, are typically placed above or alongside the user’s device, it is very difficult to 

determine if someone is looking at their device or if their attention lies elsewhere in their own 

home environment. This is a problem leading to great inconsistencies in tone and approach 

when communicating online, making it problematic in creating social relationships through 

this medium. Even in a more interactive a three-dimensional virtual environment, such as 

those in virtual reality, VR cannot fully replicate the in-person effects that eye contact and 

eye gaze can express. As stated by Syrjämäki (2020), although artificial stimuli such as 

virtual avatars are helpful, but they cannot completely replace live stimuli when studying 

people's responses in live social interactions. 

One method in which to bridge this gap is to use eye gaze tracking/eye gaze estimation to 

determine where your gaze is directed, and use this information to communicate to others 

where your attention is focused. This is more straight-forward to show in virtual reality where 

a three-dimensional vector may protrude from an avatar’s eyes to convey where their 

attention lies and at what object they may be looking at. Clay (2019) finds that, you can 

easily match the eye gaze with the different objects in a virtual environment, making it much 

more effective in conveying and predicting the intention as well as the future actions of a 

user. Furthermore, present results suggest that virtual eye contact can evoke affective arousal 

responses, and thus implementing eye gaze information in VR could make virtual interactions 

more emotionally engaging (Syrjämäki et al. 2020). This proves that eye gaze tracking is an 

extremely useful tool to eliminate the shortcomings of online interactions that were stated 

earlier. In addition to this, virtual reality can also use gaze tracking effectively to implement 

foveated rendering which improves performance of a system by taking human eyes’ inherent 

features and rendering different regions with different qualities without sacrificing perceived 

visual quality (Wang et al. 2023). 

However, eye gaze tracking currently comes in many forms using a large variety of methods 

to determine where eye gaze lies. Typically, eye gaze trackers are either classified as 

intrusive, or non-intrusive, based on their level of physical discomfort for a user. Intrusive 

eye gaze trackers, although cumbersome for majority of users, are generally more accurate 

than their non-intrusive counterparts. Examples of intrusive gaze trackers, are 
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electrooculography (EOG), where sensors are placed on skin near the user’s eyes to detect 

movements, and infrared oculography where custom glasses are used to detect infrared light 

reflected off the user’s eyes (Modi et al., 2021).  

Notwithstanding, infrared cameras are also a very common method to accurately predict eye 

gaze in a non-intrusive manner, ranging from products such as the Tobii Pro Nano (2022) to 

implementation in many current VR systems such as PSVR2 (2023) and Meta Quest Pro 

(2022). An example of how infrared cameras work is demonstrated in Figure 3, where the 

sensor typically interprets a greyscale image which easily separates the different features of 

an eye (pupil and iris), which will inform the device much more precisely of the location of 

these features to use for predictions. Normal webcams are unable to receive an image of the 

eye features as clear as the eye in Figure 3 because they only detect light in the visible 

spectrum. These work by using invisible near-infrared light and high-definition cameras to 

project light into the subject’s eye, resulting in corneal reflections, which are recorded. Then 

advanced algorithms are applied, unique for each system, to convert this information into a 

gaze vector (Orduna-Hospital et al 2023). Many gaze tracking systems also take advantage of 

multiple cameras with different angles of the user’s eye to get the most information to 

determine the current gaze vector. There also exists a recent and growing popularity in the 

use of normal webcams and machine learning algorithms to determine eye-gaze, which is 

what this project exemplifies. 

 

Figure 3: Two Images showing the iris of a user illuminated by infrared light, clearly showing the 

separation of pupil and iris in detail (Ole Baunbæk Jensen 2022) 

 



Background 

14 
 

This project showcases one important use case of eye gaze estimation, which is as a method 

in which people can interact with their devices with. Many of these eye gaze estimation 

devices rely on specific hardware to function, whereas this project is focused on the software 

developed to make eye gaze estimation possible from a webcam, akin to applications such as 

‘GazePointer’ (2016). Standard computer interfaces (e.g., mouse, keyboard), which require 

muscle movements during the Human-Computer Interaction (HCI), are mostly not suitable 

for users with severe motor disabilities (Cecilio et al. 2016). To overcome this, devices to 

help these people navigate devices disabilities are mechanical switches, proximity sensors, 

adapted joysticks, voice recognition solutions, head-trackers, and eye-trackers (Sumak et al. 

2019). These devices are found to be very effective and results of the data analysis and 

comparison between non-disabled and disabled users showed that the disabled users 

performed very similarly to non-disabled users using an EPOC+ (headset with sensors to 

measure brain activity) solution, which demonstrates that it is possible for disabled people to 

use these devices with the right tools (Sumak et al. 2019).  

 

2.2 Problem Identified 
Disabled people can have problems with navigating devices using traditional input methods 

such as a mouse and keyboard. This inhibits them from feeling like part of a community and 

having access to opportunities which are otherwise available to abled-bodied people. To 

allow them to communicate with others and remain an active part of our society requires 

innovations in how people can interact with technology. All the intrusive and non-intrusive 

devices (listed in 2.1), those whose primary function is just to track eye gaze, have struggled 

greatly to see mass-adoption for a myriad of reasons. Some of the most prevalent reasons are 

because these specialised trackers are expensive and not scalable to mobile devices 

(Valliappan et al. 2020). The technology involved in the creation of infrared (IR) sensors as 

well as their high demand in consumer electronics and aerospace lead to these IR cameras 

being expensive. Therefore, the use of a normal webcam is because they are ubiquitous in 

current devices, including both front and back facing cameras on phones. This will make it 

easier for all people to have access to this software with no additional hardware purchases 

required, which is typical of gaze estimation mouse control programs. 

Another problem identified is that using a laptop’s keyboard and mouse results in awkward 

wrist placements while typing on a keyboard or using the touchpad, a lack of support for the 

arms, which in turn places stress on the upper back (Werth and Babski-Reeves 2012). This 

problem is exacerbated by the sharp increase of jobs which now require ‘working from 

home’, on a setup similar to that described above, after the COVID-19 outbreak (Bick et al. 

2020). To address this problem, ergonomic input devices are effective, although they are still 

expensive like other solutions above. Therefore, an effective and cheap solution to solve this 

would be navigating the devices using an eye gaze tracking solution, reducing the risk for 

work related musculoskeletal disorders by avoiding the input devices that cause this harm. 

 

2.3 Stakeholders 
There are many likely stakeholders in the problem area of this dissertation, including 

researchers who are concerned with the topic of human-computer interaction, eye gaze 
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estimation, robot design, and machine learning. Also, users who have a physical disability or 

any motor impairment, as well as any user who would simply prefer to use this method of 

input device. A possible stakeholder could be people in the field of virtual reality, and the 

possibilities of using non-infrared cameras to reduce costs of headset production. Any other 

companies who design products for eye gaze estimation such as Tobii and GazePointer can 

also benefit from the research conducted and methods used in this project. Overall, this 

dissertation will be very relevant to a lot of researchers as well as users for many reasons 

concerned with using eye gaze tracking on a low-cost budget. 

 

2.4 Theory of Problem Area 
For the creation of this project, many underlying concepts and principles are used that guide 

the creation of the eye gaze tracking program. One of the most salient research areas is that of 

machine learning techniques and the resources on the benefits of regression CNN in the area 

of eye gaze tracking has greatly benefitted the effectiveness of the algorithm used in this 

program. The research involved in the purpose and effect of the different layers in a 

regression model has informed the choices used in this implementation. Computer vision 

techniques such as Haar Cascarde for object detection have been evaluated for 

implementation in this project and other methods of image processing like image conversions 

have been utilised heavily that the project relies on for working correctly. Research in the 

area of assistive technology and human computer interaction are cornerstones upon which the 

idea of the dissertation appeared, in solving the issues and deficiencies faced in these areas of 

study. 

 

2.5 Constraints of Approach 
Since the eye gaze tracking program purpose is to function with only the input from a low-

cost webcam, the accuracy of the tracking, and consequently mouse movement, is dependent 

on many factors which depend on the hardware used as well as the user’s actions. If the user 

is not in a clear position on the camera view, where both eyes are in view, the program’s 

prediction will be inaccurate. The accuracy is also affected by a myriad of different reasons 

such as the camera quality not being clear enough or the user misinterpreting the calibration 

instructions and calibrating their eye gaze to the screen incorrectly. An additional difficult 

problem to overcome is if the intended device is positioned too far from the webcam, the 

linear regression algorithm to determine the mouse coordinate would struggle to be accurate. 

As this solution of using machine learning algorithms is chosen, if the user’s hardware is not 

powerful enough to handle the model’s image processing techniques and predictions, the 

program will become too slow to run and use effectively. Unfortunately, this is a problem as 

this dissertation’s goal is to make eye-gaze tracking technology available on low-cost 

webcams and remain inexpensive, but would become inaccessible if the user does not have 

access to a powerful enough device to run this program. In conclusion, the main problem 

concerning this dissertation is many external factors negatively affecting both the 

performance and accuracy of this model. 
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2.6 Existing Solutions and Methods & Tools Used 
There exist many solutions for eye gaze tracking (as referenced in 2.1), but for the purpose of 

human computer interaction using a regular webcam, not many solutions currently exist as it 

is a field that is only recently beginning to be heavily researched. In 2013, Ghani et al 

implemented an eye gaze tracking method for real-time mouse pointer control applications 

using a webcam. In this study, a feature extraction-based approach was used to detect the 

eyes and pupils, which is what is implemented into this program. Notwithstanding, many 

existing methods for webcam-based eye gaze tracking still lack robustness, meaning they will 

work for only a very clear view of the face. Similar programs to this project use a mixture of 

machine learning and geometric calculations for both the facial detection and point of gaze to 

screen coordinate conversion. For example, implementation of GazePointer uses a wide range 

of approaches to detect facial features, from Haar-features based approach for the face, and 

using Hough Circle Transform (HCT) for the pupils (Ghani et al. 2013). However, this 

implementation method is not as effective as using current machine learning models and 

datasets which have been developed in the time since this paper was published. The two 

research papers that greatly influenced the design process of this project are by Koushik Roy 

and Dibaloke Chanda (2022) as well as Amogh Gudi et al (2020).  

 

 

 

Figure 4: (Left to right) Process for creating eye gaze estimation system with HCI capabilities (Gudi 

et al. 2020) 

An overview of the camera-to-screen gaze tracking pipeline. Images captured by the webcam are first 

pre-processed to create a normalized image of face and eyes which are used for training a 

convolutional neural network to predict the 3D gaze vector. With the cooperation of the user, the 

predicted gaze vectors can finally be projected on to the screen where he/she is looking using 

proposed screen calibration techniques. (Gudi et al. 2020) 

 

The pipeline as illustrated in Figure 4 gives a straightforward design process for the system, 

without being overbearing in the description of the methods used which is useful as a 

reference tool to plan the project’s methodology. The approach of pre-processing the image is 

extremely vital in ensuring that all inputs to the machine learning model are normalised and 

as compact in quality as can be whilst remaining accurate and the program running at a high-

performance level. However, this solution does not consider moving the mouse cursor at the 

2D gaze point on screen so the process must be adjusted taking this into account for this 

dissertation’s goals to be met. Using a regression CNN model is also very apt for this 
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purpose, where an inputted image can be used to predict a continuous value such as a three-

dimensional look vector, making this a great model to build upon in this dissertation. Once 

the gaze vector is predicted, using a calibration method (explored further in Figure 5) to map 

this to a two-dimensional point on the device screen for which the mouse will move to is a 

great concept of the processes involved in creating this application. 

An important problem that must be overcome in the creation of this project is choosing the 

method in which to map to map eye gaze to screen-coordinate, as well as how to collect this 

data for calibration. The best method of calibration requires a large number of points from a 

wide variety of positions on the screen. However, as many implementations showed, 

collecting these calibration points were cumbersome to the user and eventually a plateau 

would be hit for the accuracy of the mapping, and the model would no longer improve with 

an increase in calibration points. Therefore, an optimum number of calibration points must be 

found that maximises accuracy whilst minimising time spent by the user. Of all the resources, 

Gudi’s study was the most effective in evaluating the different methods of mapping an eye 

gaze vector to a screen coordinate. As is evident from Figure 5, the findings of this mapping 

process were tested with three implementations: a purely machine learning approach, a purely 

geometric approach, or a hybrid of the two implementations. From Figure 5, it is surmised 

that above around 10 calibration points the machine learning model and the hybrid model 

improves vastly, whilst the pure geometric model remains stagnant. The hybrid model then 

outperforms the ML model in terms of accuracy until after 40 calibration points where the 

ML becomes the best mapping method with the lowest screen point prediction error out of all 

the methods. This shows me that a large number of calibration points must be chosen, that is 

around 50 for this case, for machine learning methods to generally become superior in 

completing this task accurately. 

 

 

Figure 5: Graph of Screen Point Prediction Error (mm) against the number of calibration points for 

different implementations of converting gaze vector to screen coordinate (Gudi et al. 2020) 
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Learning curves of the calibration techniques showing that a purely geometric method performs 

better than ML method with a low number of calibration data. However, the pure geometric method 

does not improve further when more calibration data is given. The ML method improves greatly when 

calibration data becomes abundant. 

 

Furthermore, the study by Gudi evaluated the efficiency of real-time webcam gaze tracking 

applications using a cropped image of a whole face, against two eyes, or just one eye. From 

the results in Figure 6, the crop of two eyes was used to have the lowest gaze-vector error 

prediction, followed by a facial crop, and lastly a single eye crop had the highest error values. 

Since the two eyes crop was found to take less than half the computation time of the full-face 

crop, this showed that cropping two eyes from the initial webcam image is the best method 

for maximising accuracy and minimising computation time. This particular study is very 

reliable in the data provided as it is stated that, ‘in order to obtain a reliable error metric, we 

perform 5-fold cross-validation training’. This means that the model is trained on 4 of the 

folds and validated on the last fold. This process is repeated 5 times, with each fold serving as 

the validation set once. The performance of the model is then evaluated by averaging the 

results across the 5 validation sets to ensure a fair representation of the true value returned. 

 

 

Figure 6: A graph showing how different input image crops for the machine learning model, affect the 

computation time and gaze-vector prediction error 

This graph shows how the gaze-vector prediction error and average computational time is affected 

using a cropped image of a whole face, against two eyes, or just one eye. There are error bars 

included to accurately represent the range of values collected. 

 

Koushik’s study found that the use of Google’s MediaPipe framework is a remarkable tool in 

creating applications that analyse media inputs, while remaining very high in performance. 

This framework also has many uses beyond this application, such as being excellent in 

performing human pose and figure detection (Singh et al. 2022). MediaPipe is used in 

Koushik’s study to detect facial landmarks and crop out the eye region to be processed in the 

machine learning model. MediaPipe’s high level of accuracy is attributed to its immense 
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training dataset with over 100,000 three-dimensional facial scans, as well as using methods 

such as weight decay to avoid overfitting. As seen in Figure 7, this framework is capable of 

detecting up to 468 unique landmarks on a person’s face. This figure shows that these 

landmarks can be represented as green dots as well as an outline of the woman’s face. 

MediaPipe is exceptionally accurate and maintains its accuracy in low-clarity situations 

which may obscure facial features of the user. MediaPipe is used extremely effectively by 

Koushik in conjunction with OpenCV (2021) to crop out the eye region for use in their CNN 

model to predict eye gaze. 

 

 

Figure 7: Facial Landmark points using MediaPipe (Koushik and Chanda 2022) 

Google’s MediaPipe can detect up to 468 unique landmarks on a person’s face. This figure shows 

that these landmarks can be represented as green dots as well as an outline of the woman’s face. 

MediaPipe is exceptionally accurate and can be useable even in dark or obscured environments 

The aim for this project is to build a fully functional prototype that tracks eye gaze, using 

only a basic webcam. As well as displaying this information, the eye gaze direction is then 

used to control the cursor’s position in real-time, as well as interact with a computer with left 

and right clicks, using only eye movements. In order to demonstrate the achievement of the 

stated aim, this prototype will get a live feed of the user’s webcam and crop out both eye 

regions to be inputs for a machine learning model which will predict the look-vector. After a 

calibration process this information can be used to predict where the user is looking on the 

screen using another machine learning model. The user can then interact with the device 

using the predictions above in the robust prototype. 
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3. Specification, Design and Implementation 

3.1 Specification and Design 

3.1.1  User Requirements 

In this program, there are several important requirements that would need to be met for this 

prototype to be effective for end users. The following requirements are chosen, ensuring that 

they are feasible, complete, and testable. 

 

Functional requirements: 

- The user interface must minimise the number of menus to make the application remain 

accessible 

- The user must be able to view their real-time eye gaze as well as past eye gaze vectors 

- The user must be able to see the webcam feed as well as cropped eye regions 

- The user must be able to calibrate the eye gaze vector to device screen at their own pace  

- The user must be able to exit the mouse movement process at any time with a key press 

- The user must be able to choose the information that is being displayed on the user interface 

- The user must be able to see if they have performed any actions with the mouse through an 

alert 

These functional requirements are chosen because they fully encompass the scope of my 

project and satisfy all the criteria that needs to be met for the user to successfully use the 

program to fulfil its purpose. 

 

Non-functional requirements: 

- The user must have good performance, given the user has sufficient hardware 

- The user interface should be a professional colour scheme  

- The user should not experience any crashes/freezing during use 

- The user should be able to navigate to every process through just one click 

These non-functional requirements are chosen as they ensure that the application is easy for 

the user to navigate through, and find the option that they want. In addition to this, the 

prototype will perform well and consistently on the user’s device to minimise unexpected 

processes/scenarios. 

 

3.1.2 User Interface 

The graphical user interface of this application is designed with the aim of being simple, 

intuitive, and informative for a user. The wireframe for the user interface is chosen to be one 

menu, to ensure that, since the purpose of this application is beneficial for many disabled 
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users, keeping the interface simple and minimising the number of menus is beneficial as they 

can navigate with just one click. The wireframe for the application’s used interface is shown 

in Figure 8, where all processes and information can be accessed from one menu. At the top 

of the menu, it will be a feed of the webcam and the cropped section of each eye displayed to 

the user. This is so the user is aware of how they appear on the webcam, and if their eyes are 

being tracked correctly. Below this will be a checkbox for if the gaze-estimation should be 

drawn on the webcam feed or if the user prefers not to show this information. A checkbox is 

chosen which is clear and easy to understand for the user that they have a binary choice, and 

gives immediate visual feedback. Two boxes will then be displayed, the left box with 

instructions on how to work through the program, and the right box with information 

displayed concerning the predicted look vector as well as the screen-coordinate. At the very 

bottom of the UI will be two large buttons, one to ‘calibrate’ the application to the user’s 

unique scenario, and another ‘start’ button that will become available once calibration is 

complete. 

  

 

Figure 8: A wireframe for the prototype's user interface 

  

The user will already be familiar with their mouse cursor, which will move on their device 

based on where the user is predicted to be currently looking. To alert the user of the current 

instruction that is shown, a pop-up box will appear above all other windows at the top-left of 

the screen to keep the user informed at all times about the processes that are being carried 

out, such as ‘left click’, ‘right click’, ‘mouse disabled’ as well as general instructions (Figure 

9). 
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Figure 9: A wireframe for the prototype’s user interface if a new instruction is displayed 

3.1.3 Dynamic Behaviour 

One of the most important elements of this application is to be efficient as to maintain its 

real-time tracking capabilities. By using a relatively lightweight framework such as 

MediaPipe this goal is much more possible when considering how the prototype is designed. 

Calibration is a vital feature for this prototype to accurately predict the screen-coordinate that 

the user is looking at an contributes greatly to how the system behaves to unique user 

circumstances. Furthermore, dynamic behaviour of this project entails that the screen-

coordinate conversion be adaptable to the user’s head position, although difficult as the user 

moves, introducing a recalibration feature into the design process will satisfy this condition of 

dynamic behaviour.  

Through the use of regression CNN and MediaPipe, the program will remain robust under a 

large variety of user conditions, even if their face is partially obscured, predictions from the 

covered eye will still be made. In addition to this, the user interface of the program will adjust 

what information it shows based on the user’s selected checkboxes. Another example of 

dynamic behaviour is that instructions will be displayed in the instruction box, as well as at 

the top-left of the screen to ensure the user is informed about the current state their prototype 

is in (Figure 9). Also, the ‘start’ button, as shown in Figures 8 & 9, will be greyed out and 

disabled until the ‘calibration’ is completed fully, so the user cannot start the program with a 

prediction model that is not suited to their current environment. 

 

3.1.4 Data Flow 

The pipeline for this prototype has taken inspiration from Figure 4, which succinctly 

deconstructed the main processes that would need to be carried out for this program to meet 

its requirements. As seen in Figure 10, the pipeline of this program has been broken down 

into relatively simple steps. First, the webcam feed will be received, which will then have the 

detected eye regions cropped out. Then these cropped images will be fed into the Regression 

CNN to predict a corresponding 3D gaze vector. 

The program will perform all the tasks displayed in the pipeline of Figure 10 from the 

moment the program is launched, until it is closed. Once the calibration is completed by the 

user and the ‘start’ button is clicked, the pipeline will continue, as illustrated in Figure 11. 

This ‘start’ button will signify the start of the program predicting the “D screen-coordinate 

based on the user’s calibration and the predict gaze vector. The final step will be to move the 
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mouse cursor to the predicted 2D screen-coordinate, which will then have the entire pipeline 

repeated until the user stops the program or exits the mouse movement process.  

 

Figure 10: Pipeline for prototype (before ‘start’ is selected) 

 

 

 

A flowchart of the main processes in this project is shown in Figure 12. This flowchart plan 

was created to help inform the design of the program and help identify any logical flaws in 

the order of processes. First, a webcam feed would be received, which would then be cropped 

into an eye region to feed into the Regression CNN model to predict a 3D gaze vector. Then, 

if the calibration is complete, the start button to begin moving the mouse will be displayed to 

the user. If this button is detected as being clicked, the program will then predict a 

corresponding 2D screen-coordinate to the gaze vector and then move the mouse cursor to 

this coordinate. Finally, the program will check to see if the user has selected to ‘show the 

relevant information’ in the GUI, and display this information if the checkbox has been 

selected. This is when the processes begin again until the user stops the program. The flow 

will immediately go to ‘Is Show ‘Gaze and Data’ Selected?’ in Figure 12 if any of the two 

conditional symbols before are evaluated as being false. 

Another flowchart is demonstrated in Figure 13, which describes the processes that are 

carried out if the user begins the calibration of their system. When the ‘calibrate’ button is 

clicked, the calibration points will be displayed around the user’s screen. If a user clicks on a 

calibration point, the current gaze vector as well as coordinate of the point itself is stored, and 

that particular calibration point will be removed. This will be repeated until no calibration 

points remain, and then the ‘start’ button to move the mouse cursor will be displayed. This is 

important because the user should not be able to begin moving the mouse cursor as it will be 

inaccurate without completing the calibration process beforehand.  

 

 

Figure 11: Pipeline for prototype (after 'start' is selected and continued from Figure 10) 
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Figure 12: Flowchart of Prototype 
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Figure 13: Flowchart of Calibration Sequence 

 

Throughout the program there is a large variety of data types that are used to store important 

variables that are vital to the processes shown in Figures 10, 11, 12, 13. For example, the 3D 

gaze vector which is predicted by the machine learning model is aptly stored as a three-

dimensional list, with a ‘x’, ‘y’, and ‘z’ value. The predicted 2D coordinate is stored as a two-

dimensional list in the form of ‘x’ and ‘y’, which would correlate to a coordinate on the 

user’s screen. 

In this dissertation, an additional experimental calibration feature is designed (Figure 14) 

which will allow the user to calibrate the gaze vector to screen coordinate process without the 

need of clicking on every individual calibration point. It is necessary, since these applications 

functionalities provide many benefits for disabled users, that the program should remain as 

accessible as possible by reducing the number of clicks required, with a traditional mouse, in 

the setup process. This experimental calibration setup is unique compared to all other 
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calibration implementations in webcam eye trackers such as Tobii and GazePointer. In this 

process, a square will appear at the top left of the screen and traverse the screen in an 

alternating pattern until all points have been accounted for. Every gaze prediction made 

during this time will be collected whilst the user is looking at the square. This will return a 

large variety of values, much larger than the tradition calibration method shown in Figure 13, 

to train the linear regression model on and determine accurate mouse cursor movements. The 

deliberate choice was made to allow the user to choose between both calibration methods 

depending on their preferences, allowing them to calibrate in the method that they are most 

comfortable with, because the experimental calibration will generally take longer than the 

normal calibration. 

 

 

Figure 14: Flowchart of Accessible Calibration Method 
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3.1.5 Algorithms 

Many algorithms are needed in the design of this program for the requirements to all be met 

sufficiently. Some of the main algorithms include the algorithm which detects and crops the 

eye regions, the regression convolutional neural network model, the linear regression model, 

mapping the eye gaze vector to the webcam, and showing the calibration points to the user.  

The eye region crop is an important algorithm so an accurate image, like those in the 

SynthesEyes Database, can be fed into the regression CNN model which has its own unique 

implementation in this project that has been optimised to minimise loss. To map the eye gaze 

vector to the webcam as a simple visualisation for the user, this is done by converting the 

vector into pitch and yaw, using a magnitude value that accurately represents the z value of 

the eye gaze vector. All these algorithms are explored further in (3.2.3) 

 

3.1.6 Architecture 

All the code needed for the creation of this project has been partitioned into three separate 

modules, each of which have a distinct purpose. The three modules were cnn_regression, 

eye_tracker, and Tkinter_GUI. 

First module of ‘cnn_regression’ defines the machine learning model that is used to predict 

the three-dimensional gaze vector from an image of the user’s eye. This module trains the 

machine learning model using the SynthesEyes database (Wood et al. 2020). Below are all 

the modules and some of the more important variables required for the program to meet its 

functional and non-functional requirements as seen in 3.1.1. 

Cnn_regression.py: 

Function: get_x_y 

• Variable: df (DataFrame) 

Function: get_grid_search 

• Variables: X_train, y_train, X_val, y_val (NumPy arrays), model 

(KerasRegressor), batch_size (list), epochs (list), param_grid (dictionary), 

grid (GridSearchCV), grid_result (GridSearchCV result object) 

Function: get_prediction 

• Variables: npz_file_path (string), model (Keras model), npz_file (NumPy 

file), pic_data (NumPy array), prediction (NumPy array) 

Function: compute_difference 

• Variables: row (DataFrame row), x (NumPy array), pred (NumPy array), 

abs_diff (NumPy array) 

Function: get_load_model 

• Variables: df (DataFrame), input_pic (NumPy array), loaded_model (Keras 

model), test_predictions (NumPy array), test_preds_series (pandas Series) 

Function: get_average_difference 

• Variables: df (DataFrame), xyz_values (list of NumPy arrays), avg_xyz 

(NumPy array) 

Function: create_model 
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• Variables: X_train, y_train, X_val, y_val (NumPy arrays), K (backend 

module from Keras), model (Keras model), cp (ModelCheckpoint object) 

Function: get_loss 

• Variables: model (Keras model), X_test, y_test (NumPy arrays), loss (float) 

Function: get_all_vectors 

• Variables: names_df (DataFrame), df (DataFrame) 

Function: drop_columns 

• Variables: df (DataFrame), column_list (list) 

Function: load_npz_dataset 

Function: create_dataframes 

• Variables: df (DataFrame), train_size (integer), val_size (integer), train_df, 

val_df, test_df (DataFrames) 

Function: load_pkl_dataset 

Function: open_file 

• Variables: file_name (string), f (file object), data (pickled object), 

image_file_path (string), file_look_vector_x, file_look_vector_y, 

file_look_vector_z (floats) 

 

The second module called ‘eye_tracker’ performs all the image processing required to get the 

eye region from the webcam feed using the landmarks that are detected. In addition to this, 

this module detects if the eye blinks and plots the visualisation of the three-dimensional gaze 

vector for the user to see. 

Eye_tracker.py: 

Function: main 

• Variables: averaged_look_vector (list), selected_display (integer) 

Function: landmarksDetection 

• Variables: img (image), results (object), draw (boolean) 

Function: euclideanDistance 

• Variables: point (tuple), point1 (tuple) 

Function: blinkRatio 

• Variables: img (NumPy array), landmarks (list), right_indices (list), 

left_indices (list) 

Function: get_face_center 

• Variables: frame (image), results_mesh (object) 

Function: get_eye_keypoints 

• Variables: chosen_eye (string), frame (image), detection (object), 

mp_face_detection (module) 

Function: get_eyes_dimensions 

• Variables: left_eye (tuple), right_eye (tuple) 

Function: get_eye_region 

• Variables: eye (tuple), eye_width (int), eye_height (integer), frame (Numpy 

array) 

Function: get_pupil_center 

• Variables: chosen_iris (list), frame (NumPy array), results_mesh (object) 

Function: get_look_vector_prediction 
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• Variables: eye_pic_data (ndarray) 

Function: read_window 

• Variables: eye_region (NumPy array) 

Function: display_window 

• Variables: eye_region (NumPy Array), window_name (string) 

Function: read_image 

• Variables: image (NumPy array) 

Function: get_gaze_values 

• Variables: pupil_center (tuple), look_vector (list), length (int) 

Function: plot_gaze 

• Variables: pupil_center (tuple), arrow_end (tuple), frame (NumPy array) 

Function: exit_program 

• Variables: cap (object) 

Function: read_frame 

• Variables: cap (object), face_mesh (module) 

Variables (defined initially outside of functions): 

• df (DataFrame) 

• mp_face_detection (module) 

• mp_drawing (module) 

• face_detection (object) 

• mp_face_mesh (module) 

• LEFT_IRIS_ID (list) 

• RIGHT_IRIS_ID (list) 

• LEFT_EYE (list) 

• RIGHT_EYE (list) 

• FACE_CENTER_ID (list) 

• cap (object) 

• model (object) 

 

The final module is called ‘TkinterGUI’ and controls the user interface of the program and 

how the user is presented the information calculated by this and the other two modules. In 

addition to this, this module uses linear regression to convert the gaze vector to a predicted 

screen coordinate. The calibration methods are also defined in this module so the linear 

regression can be applied correctly. 

TkinterGUI.py: 

Initialised at the beginning of the module: 

• frame: a frame object 

• self.look_vector: a list of floats with three elements 

• left_eye_region: a numpy array 

• right_eye_region: a numpy array 

• reRatio: a float 

• leRatio: a float 

• self.screen_width: an integer 

• self.screen_height: an integer 

• self.look_vector_list: an empty list 
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• self.window_coordinate_list: an empty list 

• self.gaze_history: an empty list 

• self.spacing: an integer 

• self.num_windows: an integer 

• self.start: None 

• self.move_mouse: a Boolean 

 

Widgets that are created for the user interface using Tkinter 

• self.title_label: a label object 

• self.video_label: a label object 

• video_labels_frame: a frame object 

• self.left_eye_video_label: a label object 

• self.right_eye_video_label: a label object 

• container_frame: a frame object 

• plot_checkbox_frame: a frame object 

• self.selected_display: an integer 

• self.plot_eyes_radiobutton: a radiobutton object 

• self.plot_face_radiobutton: a radiobutton object 

• self.plot_both_radiobutton: a radiobutton object 

• info_checkbox_frame: a frame object 

• self.look_vector_checked: a Boolean 

• self.look_vector_checkbox: a checkbutton object 

• self.mouse_coord_checked: a Boolean 

• self.mouse_coord_checkbox: a checkbutton object 

• frame1: a frame object 

• instructions_frame: a frame object 

• instructions_lbl: a label object 

• self.instructions: a text object 

• information_frame: a frame object 

• information_lbl: a label object 

• self.information: a text object 

 

Function that shows the user the webcam feed and performs linear regression 

• frame: a numpy array 

• video_feed: a numpy array 

• left_eye_image: an Image object 

• left_eye_image_tk: an ImageTk object 

• right_eye_image: an Image object 

• right_eye_image_tk: an ImageTk object 

• gaze: a list of floats with three elements 

• window_coordinate: a tuple with two integers 

• current_time: a float 

• diff: a float 

• face_location: a tuple with four integers 

• is_look_vector_checked: a Boolean 
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• is_mouse_coord_checked: a Boolean 

• predicted_coord: a tuple with two integers 

 

This program is split into these three distinct modules as they all serve a unique purpose, as 

well as to achieve modularity, so each of these important processes can be tested separately, 

independent from one another. In turn, this will lead to easier and more effective 

troubleshooting in the development of this dissertation’s requirements. 
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3.2      Implementation 

3.2.1 User Interface 

For the implementation of the user interface (Figure 15), the program follows the original 

wireframe design that was created very closely. In particular, the UI was made to be simple, 

intuitive, and informative (see 3.1.2) for the user, which has been achieved through the use of 

clear headings and grouping similar information together, such as the eye gaze and webcam 

feed. The colour scheme chosen was a professional and sleek grey background with white 

boxes for the instructions and information to be displayed clearly. There is also a logo icon of 

an eye so the user is easily able to identify this app in taskbars (Appendix A4). This all was 

completed using the Tkinter library in Python because of its simplicity in use and large 

community that surround this library giving plenty of resources to learn solutions from. As 

seen in Appendix A1, the implementation of radio buttons is chosen for the user to select one 

of three mutually exclusive display methods for the calculated eye gaze vector. Appendix A1 

also showcases how simple the Tkinter library is in creating the radio buttons by simply 

assigning each selection a unique value which will be checked in an ‘if statement’ to see 

which selection is current chosen. First default option of ‘Eye Gaze’ displays the vector 

protruding from the user’s eyes (Figure 15), the second option (Appendix A2) displays a 

single gaze vector from the user’s face, whilst Appendix A3 shows the option to ‘display 

both’ gaze vector. However, these changes are entirely visual and cosmetic, having no effect 

on the actual function of predictions, instead implemented only to communicate clearly to the 

user what their current gaze vector is predicted to look like. As is evident in Figure 15, The 

‘Start Controlling Mouse’ button is disabled, this is to signal to the user that they must 

complete the calibration process before accessing this button (stated in instructions box). 

 

 

Figure 15: Menu GUI Shown on Program Launch 
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The functionality has also been implemented to show the user the current look vector as a 

three-dimensional coordinate as well as the predicted mouse coordinate two-dimensional 

vector, if the user selects the checkboxes shown in Figure 15. This information is shown in 

the ‘information’ box, as showcased in Figure 16, to provide more information to the user 

about the predictions that are made. In addition to this, the instructions also display the clicks 

that the user has performed with the mouse controlled by eye movement. These instructions 

also appear as pop-ups on the top-left corner of the user’s device to alert them of any 

important inputs and information, illustrated in Figures 17 and 18 and as specified in the 

design wireframes. The ‘mouse disabled’ message in Figure 18 is displayed when the user 

inputs “Shift + F5” which exits the mouse control feature of this program. Figure 14 is also in 

the process of controlling the mouse, therefore the ‘start’ button has been replaced by a 

disabled ‘Running’ button which indicates clearly to the user that the process of controlling 

the mouse has begun. 

 

 

Figure 16: Instructions and Information Shown to User of Predicted Look Vector and Predicted 

Mouse Coordinate 

 

Figure 17: Instruction Pop-Up of ‘Right Click’ at Top-Left of User's Device 

 

Figure 18:Instruction Pop-Up of 'Mouse Disabled' at Top-Left of User's Device 

 

Similar to Figure 16’s ‘Running’ button, Figure 19 shows that as the calibration process is 

being complete (Figure 20), the buttons will all replace themselves to show ‘Calibrating…’ 

that clearly indicates to the user that the calibration process must be completed before 

proceeding in the application. 

 



Specification, Design and Implementation 

34 
 

 

Figure 19: Main Menu UI when Calibration Process is Ongoing 

 

Figure 20 shows what the user is presented with once the ‘Calibrate’ button is selected. 

Twenty-five equally spaced squares will spawn around the user’s screen. The user is 

instructed to look at the red dot points and then click on the associated green square, which 

will store the gaze vector and relevant point coordinates as well as remove that specific point. 

The window number that has been removed as well as the associated look vector is printed 

into the information box as seen in Figure 19. This process will be repeated until all points 

have been removed and the ‘start’ button will become accessible, as initially designed in 

Figure 13. The green square around each red dot allows the user to easily click on each 

calibration point without having to manoeuvre the mouse precisely on the red dot point. 

Overall, this method of calibration is very robust and collects enough points for the Linear 

Regression to make accurate predictions upon. 

 

 

Figure 20: The Calibration Screen Which Displays 25 Calibration Points 
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3.2.2 Dynamic Behaviour 

In the creation process of this application, it was important to maintain functionality of the 

program in less-than-ideal circumstances, such as those highlighted in 3.1.3. As demonstrated 

in Figure 21, 22, 23, and 24, the MediaPipe library is still able to detect eye regions even in 

circumstances where the user’s face is either unclear or obscured. Figure 21 shows the user 

sitting more than a metre away from the webcam and the eye detection algorithm, although 

somewhat inaccurate at these extended distances, it is still able to crop out the estimated eye 

regions as inputs to the machine learning model. Figure 22 showcases that the eye regions 

can be accurately detected even with a high contrast between the brightness of the user’s face 

and the background. Likewise, the eye gaze estimations are able to be made in environments 

where the user’s face and background is dark, such as in Figure 23. Figure 24 showcases the 

robust nature of the application which will estimate the position of the obscured eye 

landmarks and still make predictions, albeit less accurate as data from only one eye can be 

used effectively. Overall, the eye gaze tracker is still robust under many conditions, less so 

the further away a user is, or if the user’s face is partially covered, yet still functional 

especially in darker environments. 

 

 

Figure 21: Eye Gaze Vector Still Predicted When User is Located Far Away from Webcam 

 

Figure 22: Eye Gaze Vector Still Predicted When User Has a Dark Background Area 
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Figure 23: Eye Gaze Vector Still Predicted When User's Face Is in Semi-Darkness 

 

Figure 24:  Eye Gaze Vector Still Predicted Even with One Eye Obscured 

 

3.2.3 Algorithms 

These are a wide variety of unique and vital algorithms which have been implemented into to 

this program to meet all the requirements successfully, this section will cover the main 

algorithms implemented. First is the algorithm that detects the pupil centre as shown below in 

Figure 25. This function utilises the MediaPipe library which has a coordinate system of 

mesh points that is called with the variable of chosen iris that stores the indexes of all 4 iris 

points detected by MediaPipe. Then ‘mesh_points’ is used to store all of these four points, 

and ‘(cx, cy)’ calculates the average of these four iris points which is the pupil centre. This is 

a very innovative way to utilise the MediaPipe library which can not natively detect the pupil 

itself, so using an average of all four corners of the iris to determine the pupil centre was a 

lightweight and effective methodology. Popular libraries such as OpenCV, which can detect 

the largest contours for the pupil, were also considered for this role, but in implementation 

they were much less accurate and robust in detecting the pupil position than the MediaPipe 

library. 
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def get_pupil_center (chosen_iris, frame, results_mesh): 

    #Stores all x and y coordinates of facial landmarks 

    mesh_points = np.array([np.multiply([p.x, p.y], frame.shape[:2][::-

1]).astype(int)  

                            for p in 

results_mesh.multi_face_landmarks[0].landmark]) 

    #Define and plot the pupil center position 

    (cx, cy), radius = cv2.minEnclosingCircle(mesh_points[chosen_iris]) 

    pupil_center = np.array([cx, cy], dtype=np.int32) 

    return pupil_center 
Figure 25: Detect Pupil Center using MediaPipe 

 

Another algorithm vital for this program’s function is the cropping and normalisation of the 

eye regions. Figure 26 illustrates this code, where ‘eye_x = int(eye[0] - eye_width * 0.5)’ 

calculates the x-coordinate of the top-left corner of the eye region. It takes the x-coordinate of 

the center of the eye ‘eye[0]’ and subtracts half of the eye width ‘eye_width * 0.5’. 

Similarly,’ eye_y = int(eye[1] - eye_height * 0.65)’ calculates the y-coordinate of the top-left 

corner of the eye region. It takes the y-coordinate of the center of the eye ‘eye[1]’ and 

subtracts 65% of the eye height (eye_height * 0.65). This is because the eye height is roughly 

70% of eye width, so these values chosen will be able to show the full eye region which is 

cropped into 120x80 dimensions (in line with SynthesEyes database). The image is also 

converted into RGB (red green blue) format from the default BGR (blue green red) format so 

it can be fed into the Regression CNN model. 

 

def get_eye_region(eye, eye_width, eye_height, frame): 

    eye_x = int(eye[0] - eye_width * 0.5) 

    eye_y = int(eye[1] - eye_height * 0.65) 

 

    eye_region = frame[eye_y:eye_y+eye_height, eye_x:eye_x+eye_width] 

    return eye_region 

 

cropped_eye_region = cv2.resize(eye_region, (120, 80)) 

 

pic_rgb_arr = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 
Figure 26: Crop Eye Region 

 

Figure 27 showcases the implementation of plotting the eye gaze vector onto the user’s 

webcam feed. Firstly, the pitch and yaw values are calculated from the three dimensional 

predicted ‘look_vector’ which is stored as [x, y, z]. A scaling factor ‘z_scale’ is calculated 

based on the z-coordinate and the length defined. This scaling factor is used to adjust the 

length of the arrow based on the depth of the gaze. These pitch and yaw angles are then 

converted into coordinates ‘dx, dy’ which is used to find the two-dimensional coordinates on 

the webcam feed that would accurately represent the z-value (depth) and its magnitude in 

relation to the pupil centre that was calculated earlier.  These are then plotted on the webcam 
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frame using the OpenCV functionalities ‘circle’ and ‘arrowedLine’. Although initially 

difficult to solve the problem of representing magnitude of a three-dimensional vector in a 

two-dimensional environment, this algorithms implementation successfully addresses this 

issue completely.  

 

def get_gaze_values(pupil_center, look_vector, length): 

    #Convert look vector to pitch and yaw 

    pitch = math.asin(look_vector[1]) 

    yaw = math.atan2(look_vector[0], -look_vector[2]) 

 

    #Define and apply ascaling factor based on the z coordinate and arrow 

length 

    dz = length * math.cos(pitch) * math.cos(yaw) 

    z_scale = max(0.1, dz / length) 

    length *= z_scale 

 

    #Convert pitch and yaw angles to position 

    dx = length * math.cos(pitch) * math.sin(yaw) 

    dy = length * math.sin(pitch) 

    dz = length * math.cos(pitch) * math.cos(yaw) 

 

    #Get end point in relation to pupil center 

    end_x = int(pupil_center[0] + dx) 

    end_y = int(pupil_center[1] + dy) 

    #end_z = int(dz) 

 

    return end_x, end_y 

 

def plot_gaze(pupil_center, arrow_end, frame): 

    #Plot the pupil center 

    cv2.circle(frame, pupil_center, 1, (0,255,0), 2, cv2.LINE_AA) 

    #Plot the gaze line 

    cv2.arrowedLine(frame, pupil_center, arrow_end[:2], (0, 0, 255), 

thickness=2) 
Figure 27: Two Functions that Plot Eye Gaze Vector on User's Webcam Feed 

 

In Figure 28, the Regression CNN Model is shown, in which the training of this model is 

completed using Keras in Tensorflow. Keras has abundant documentation and plenty of 

resources to learn from, and is an interface for Tensorflow. To ensure that the data is a 

healthy mix of eye types, the order of the dataframe with the look vector and image data has 

been shuffled, with 80% being the training dataset, 10% being validation data, and the final 

10% being test data. This split was chosen to get a large enough sample of random training 

data, which will greatly help the model in reducing its loss function. In addition to this, it is 

very important to get a large enough validation set to prevent common machine learning 

pitfalls such as overfitting as well as evaluate the model’s performance. The testing dataset 
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was shuffled to ensure that there was no bias in the results and to assess how effective the 

model is in making predictions from unseen data.  

In this function (Figure 28), x_train is the image training data and y_train is the gaze vector 

training data. In the final line of the model, a custom activation function is also called, in 

which all vector values beyond the range of -1 to 1 are clipped to equal the closest of these 

two values. This is done to ensure that all predicted values are within the expected range that 

the mathematical calculations can later be performed correctly. 

This model first creates a stack of layers which allows the creation of defining and adding 

more layers to the model. Next, A two-dimensional convolutional layer is added which has 

32 filters of size 5x5, using the ‘relu’ activation function. The effect of increasing the number 

of filters will allow the model to capture more complex patterns in the data, however, it also 

increases the computational complexity and memory requirements of the model. 32 filters 

with the size of 5x5 is chosen to get an accurate representation of the input image data, whilst 

not being overbearing. Also, inputs of only the image shape (120,80) are able to be input into 

this model. The popular ‘relu’ function has been implemented because of its functionality that 

learns complex patterns and make non-linear predictions whilst also being computationally 

efficient to compute compared to some other activation functions. The next step in this 

Regression CNN model is to add a max pooling layer which reduces the spatial dimensions 

of the previous layer's output by taking the maximum value within each 2x2 region. 

‘MaxPooling2D’ is very effective in feature extraction, where the most important features are 

extracted from the 5x5 dimensions, which in turn reduces the computational complexity of 

the model. The next line adds another convolutional layer with 64 filters of size 5x5 and 

‘relu’ activation again. This additional convolutional layer allows the model to learn more 

complex and higher-level features from the down sampled representations in the line before. 

Again, the representation is down sampled and then through 128 filters with a size of 3x3.  

The model is then flattened which reshapes the previous layer into one dimension, preparing 

it to connect the convolutional layers to the fully connected layers. A very important part of 

this model is the ‘Dropout’ layer which prevents overfitting of the model by setting 50% of 

the input values to 0 which forces the model to improve at generalising and predicting from 

new unseen image data. Finally, a fully connected dense layer is added, which is then used to 

return three values that correspond to the [x,y,z] values of the predicted gaze vector. Overall, 

this model is extremely effective in taking an input image and returning a predicted three-

dimensional vector based on the features of the image. 

The method in which to evaluate loss is measured using ‘mean squared error’ which 

calculates the average of the squared differences between each predicted and true value. As is 

evident in the code in Figure 28, the popular Adam optimiser is utilised because of its 

efficacy in regression models which is due to the Adam optimiser’s learning rate which can 

change and adapt to a wide range of values, such as is used in the image data. The best 

version of this model is then saved using the validation dataset to evaluate the loss value in an 

unbiased manner. The model was trained using 50 epochs and a batch-size of 8, which was 

determined as the best values for reducing the loss value using the grid search method 

(explored further in 4.). Regression CNN was used because of its ability to return a 

continuous value from image data by detecting patterns within images. Furthermore, it is the 

most popular and well-documented method in which to make predictions from images, as 
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CNN are typically used for categorical data. As seen in detail under Appendix E1, this model 

deals with 815,939 parameters that are updated during this model to optimise its 

performance. 

 

def create_model(X_train, y_train, X_val, y_val): 

    from keras import backend as K 

 

    def custom_activation(x): 

        return K.clip(x, -0.1, 0.1) 

     

    #Define the CNN architecture 

    model = models.Sequential() 

    model.add(layers.Conv2D(32, (5, 5), activation='relu', 

input_shape=X_train.shape[1:])) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(64, (5, 5), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Conv2D(128, (3, 3), activation='relu')) 

    model.add(layers.MaxPooling2D((2, 2))) 

    model.add(layers.Flatten()) 

    model.add(layers.Dropout(0.5)) 

    model.add(layers.Dense(64, activation='relu')) 

    model.add(layers.Dense(3, activation=custom_activation)) 

 

    #Compile the model with an appropriate loss function and optimizer 

    model.compile(loss='mean_squared_error', optimizer='Adam') 

 

    cp = ModelCheckpoint('model/', monitor='val_loss', mode='min', 

save_best_only=True) 

 

    #Train the model on the dataset 

    model.fit(X_train, y_train, epochs=50, batch_size=8, 

validation_data=(X_val, y_val), callbacks=[cp]) 

    return model 
Figure 28: Training of Regression CNN Model to Predict Eye Gaze Vector from Image Input 

 

The model above (Figure 28) is called twice and is executed on both cropped eye regions, as 

were seen as the most effective method to do so in Figure 6. Both predicted values are then 

averaged together and stored to have an overall eye gaze vector which takes in account both 

eye regions (Figure 29). 

 

averaged_look_vector = [(x + y) / 2 for x, y in zip(left_look_vector, 

right_look_vector)] 
Figure 29: Averages Both Predicted Gaze Vectors 
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Another important algorithm vital for the requirements to be met is the functionality of 

blinking with the left eye to left-click and the right-eye to right-click. This unique 

implementation to this application provides an intuitive input method for the user to interact 

with their device using their eye movements, in this case detecting a wink of one eye to 

perform the function above. This innovative implementation is seen in Figure 30, where a 

blinking ratio is calculated (that represents the extent to which a user’s eye is closed) for each 

eye by calculating the distance between the detected landmarks of the eye lids between each 

other using MediaPipe. The detected landmarks are the top and bottom middle of each eye as 

well as the corners of the eyes. If the distance between the two points is detected as being 

below a threshold, the extent to which a user’s eyes is detected as being closed increases, and 

code is executed to left click or right click based on the closed eye. 

def blinkRatio(img, landmarks, right_indices, left_indices): 

    #Right Eyes  

    #horizontal line  

    rh_right = landmarks[right_indices[0]] 

    rh_left = landmarks[right_indices[8]] 

    #vertical line  

    rv_top = landmarks[right_indices[12]] 

    rv_bottom = landmarks[right_indices[4]] 

 

    #Left Eyes 

    #horizontal line  

    lh_right = landmarks[left_indices[0]] 

    lh_left = landmarks[left_indices[8]] 

 

    #vertical line  

    lv_top = landmarks[left_indices[12]] 

    lv_bottom = landmarks[left_indices[4]] 

     

    rhDistance = euclaideanDistance(rh_right, rh_left) 

    rvDistance = euclaideanDistance(rv_top, rv_bottom) 

 

    lvDistance = euclaideanDistance(lv_top, lv_bottom) 

    lhDistance = euclaideanDistance(lh_right, lh_left) 

 

    if rvDistance != 0: 

        reRatio = rhDistance/rvDistance 

    else: 

        reRatio = 0 

 

    if lvDistance != 0: 

        leRatio = lhDistance/lvDistance 

    else: 

        leRatio = 0 

 

    return reRatio, leRatio 
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def euclaideanDistance(point, point1): 

    x, y = point 

    x1, y1 = point1 

    distance = math.sqrt((x1 - x)**2 + (y1 - y)**2) 

    return distance 
Figure 30: Detects a Blink Based on Distance Between the Two Eyelids and Corners of the Eye 

 

The model that is chosen to predict the screen-coordinate of the cursor based on the eye gaze 

vector is shown in Figure 31, which is a linear regression model. This is clearly the most 

appropriate model for this use case because of its simplicity and efficiency, as the 

relationship between an eye movement, such as a saccade, and the screen coordinate is close 

to, if not, linear. This mapping may vary from person to person but with the calibration 

process and linear regression, and accurate prediction can easily be made, evaluated by the 

‘R-squared score’. This score represents how well a model fits the data between -1 and 1, 

where 1 is a perfect fit. Through my research and testing, a R-squared score above 0.7 is 

needed for the program to move the mouse to an accurate screen coordinate based on the eye 

gaze vector. This program alerts the user if their R-squared score from the linear regression 

model is below 0.7 (Appendix F1) and will notify the user if the R-squared score is sufficient 

enough for use (Appendix F2). 

 

def create_screen_model(self): 

        #Split the data 

        X_train, X_test, y_train, y_test = 

train_test_split(self.look_vector_list, self.window_coordinate_list, 

test_size=0.2) 

 

        #Define the model 

        screen_model = LinearRegression() 

 

        #Train the model 

        screen_model.fit(X_train, y_train) 

 

        #Evaluate the model 

        score = screen_model.score(X_test, y_test) 

        self.print_to_text(self.information, 'R-squared score:', score) 

        if score < 0.7: 

            self.show_message("Recommended R-squared score is above 0.7\nYour 

R-squared score is: {}\nPlease calibrate again keeping your head still\nOnly 

move your eyes to the square".format(score)) 

        else: 

            self.show_message("Recommended R-squared score is above 0.7\nYour 

R-squared score is: {}\nPress Start to begin".format(score)) 

        return screen_model 

Figure 31: Linear Regression Model and R-Squared Score Calculation 
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Another main algorithm implemented which is paramount to the function of this application 

is the calibration method in which user’s map their eye gaze to a screen coordinate. The code 

shown in Figure 32 below first uses the input of 25 squares to equally space these squares out 

on the user’s screen with a slight padding between them to differentiate the calibration 

squares. Each calibration point is stored as its own window and is coloured ‘lime’ with a 

‘red’ circle in the middle to represent the specific position of thew calibration point. Once a 

click has been detected on a calibration point, the point will be destroyed and the associated 

gaze vector at the time and the points coordinate are stored in two separate lists that are later 

mapped to each other in the training of the linear regression model. 

def set_windows(self): 

        num_windows = 25 

        rows = 5  #number of rows 

        cols = 5  #number of columns 

        x_start = 0  #starting x-coordinate for first column 

        y_start = 0  #starting y-coordinate for first row 

        x_step = (self.screen_width - self.spacing * (cols - 1)) / 

cols  #distance between columns 

        y_step = (self.screen_height - self.spacing * (rows - 1)) / 

rows  #distance between rows 

        for i in range(num_windows): 

            row = int(i / cols)  #calculate which row the window should be in 

            col = i % cols  #calculate which column the window should be in 

            x1 = x_start + (col * (x_step + self.spacing)) 

            y1 = y_start + (row * (y_step + self.spacing)) 

            x2 = x1 + x_step 

            y2 = y1 + y_step 

            self.create_square_window("Window {}".format(i+1), x1, y1, x2, y2) 

     

def create_square_window(self, name, x1, y1, x2, y2): 

        #Adjust window position if it exceeds maximum coordinates 

        if x2 > self.screen_width: 

            x1 -= (x2 - self.screen_width) 

            x2 = self.screen_width 

        if y2 > self.screen_height: 

            y1 -= (y2 - self.screen_height) 

            y2 = self.screen_height 

 

        square = tk.Canvas(window, width=int(x2 - x1), height=int(y2 - y1), 

bg="lime", highlightthickness=0) 

        square.pack(fill="both", expand=True) 

        # calculate the centre of the canvas 

        center_x, center_y = (x2 - x1) / 2, (y2 - y1) / 2 

        # draw a red circle in the center of the canvas 

        radius = 20 

        square.create_oval(center_x - radius, center_y - radius, center_x + 

radius, center_y + radius, fill="red") 
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        square.bind("<Button-1>", lambda event, lv=self.look_vector: 

self.on_square_destroyed(name, window))  #destroys the window on left mouse 

click and prints the mouse position 

        return window 

 

self.print_to_text(self.information, f"{name} square at {center_x,center_y} 

destroyed with look vector: ", self.look_vector) 

self.look_vector_list.append(self.look_vector) 

self.window_coordinate_list.append((x,y)) 

Figure 32: Calibration Method and Storing Values Returned 

 

An ‘experimental calibration method was also implemented (see 3.1.4) in which the user 

would not have to click on any calibration points, but instead just have their eyes follow a 

moving square on the device. Shown in Figure 33, the functionality follows the processes 

defined in the 3.1.4 so the user can calibrate their eye gaze without any inputs necessary. The 

calibration points traverses the user’s device going left, right, and down, until the whole 

screen has been traversed by this point in which case the point is destroyed and the start 

button will become available. The x direction is flipped when the point touches the edge of 

the device and makes steps of 50 pixels every 0.01 seconds. The time library in python is 

utilised to ensure that the movements of this calibration point is consistent, regardless of the 

other processes occurring concurrently.  

def move_window(x_direction): 

            calibration_complete = False 

            x, y = window.winfo_x(), window.winfo_y() 

            window_width, window_height = window.winfo_width(), 

window.winfo_height() 

            if x + window_width >= screen_width: 

                x = screen_width - window_width 

                y += window_height 

 

                if (y + window_height >= screen_height and x == screen_width - 

window_width) or (y + window_height >= screen_height and x == screen_width + 

window_width): 

                    calibration_complete = True 

                    window.destroy() 

                    self.define_model() 

                    self.start_button.config(text="Start", state="normal") 

                x_direction = -50  #Flip the x direction            

            elif x <= 0: 

                x_direction = 50  #Flip the x direction 

                y += window_height 

            x += 1 * x_direction 

            if calibration_complete == False: 

                self.window_coordinate_list.append((x+25,y+25)) 

                window.geometry("+{}+{}".format(x, y)) 

                self.look_vector_list.append(self.look_vector)              



Specification, Design and Implementation 

45 
 

                #Calculate the time interval since the last call to 

move_window 

                time_interval = time.perf_counter() - 

move_window.last_call_time if hasattr(move_window, 'last_call_time') else 0 

             

                #Adjust the time interval to maintain a consistent speed 

                adjusted_time_interval = max(0.01, 0.01 - time_interval) 

                #Schedule the next call to move_window with the adjusted time 

interval 

                window.after(int(adjusted_time_interval * 1000), move_window, 

x_direction)                 

                #Update the last_call_time attribute 

                move_window.last_call_time = time.perf_counter() 
Figure 33: Automatic Calibration Method Implementation 

 

3.2.4 Problems 

Some problems were encountered during the creation of this application which hindered 

some implementation methods and results. For Example, by default SynthesEyes stores all of 

its data as a .png and an associated .pkl file. All these pkl files have been converted into npz 

files with the relevant data needed, removing all unnecessary values stored by the database 

which is not utilised in this program. In Figure 34, a data frame in the Pandas library has been 

created to store the relevant information for every image in the database, which is then saved 

as npz files. This has been carried out because there was an abundance of data for the model 

to process, so to shorten the processing time, npz files were created in which compression is 

performed using the ZIP compression algorithm, which reduces the file size and allows for 

efficient storage and retrieval of the data. This problem had taken a substantial amount of 

time to solve and look for another method in which to represent the database’s pkl files 

relevant information for fast retrieval. 

 

def load_pkl_dataset(): 

    images = np.array([]) 

    look_vector_x = np.array([]) 

    look_vector_y = np.array([]) 

    look_vector_z = np.array([]) 

    npz_paths = glob.glob('SynthEyes_data/**/*.pkl', recursive=True) 

 

    for name in npz_paths: 

        image_file_path, file_look_vector_x, file_look_vector_y, 

file_look_vector_z = open_file(name) 

 

        images = np.append(images, image_file_path) 

        look_vector_x = np.append(look_vector_x, file_look_vector_x) 

        look_vector_y = np.append(look_vector_y, file_look_vector_y) 

        look_vector_z = np.append(look_vector_z, file_look_vector_z) 

 

    names_df = pd.DataFrame({'name':[y for y in images], 
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                             'x':[x for x in look_vector_x], 

                             'y':[y for y in look_vector_y], 

                             'z':[z for z in look_vector_z]}) 

 

    npz_paths = [] 

    for i, row in names_df.iterrows(): 

        picture_path = row['name'] 

        npz_path = picture_path[:-4] + '.npz' 

        npz_paths.append(npz_path) 

 

        pic_bgr_arr = cv2.imread(picture_path) 

        pic_rgb_arr = cv2.cvtColor(pic_bgr_arr, cv2.COLOR_BGR2RGB) 

 

        vector_in = np.array([row['x'], row['y'], row['z']]) 

 

        np.savez_compressed(npz_path, pic_data=pic_rgb_arr, 

vector_in=vector_in) 

     

    names_df['npz_path'] = pd.Series(npz_paths) 

    return names_df 

 
Figure 34: Conversion of SynthesEyes .pkl Files to .npz Files with Look Vectors Stored 

 

To read the .npz files another algorithm was utilised (Appendix B1), an to validate that the 

data was being stored correctly in the .npz files, NPZViewer was installed to check the 

format of these files (Appendix B2). 

One frustrating setback was the lack of documentation and surrounding community around 

the MediaPipe library, which is attributed to its recent creation. Although OpenCV is much 

more well documented, the accuracy of the eye detection algorithms were not up to the 

standard needed for this application to function effectively. Therefore, once the capabilities of 

MediaPipe in face and object detection were demonstrated, it was clear that this was the best 

implementation. However, MediaPipe not being able to detect pupils, and having scare 

information on eye detection purposes, much experimentation was carried out with the 

landmark numbers and methods in order to get the pupil centre detected accurately. The 

solution was found by averaging out the coordinates of the iris which would return the correct 

pupil centre. 

Another problem encountered in determining eye gaze vector, is since the eye regions are the 

only parts of the face being fed to the machine learning model, the Wollaston’s effect is not 

taken into account at all (Hecht et al. 2020). This is a famous optical illusion in which the 

position of a person’s head can influence a viewer’s perception of the direction of their gaze. 

The same eye region overlaid on two different head orientations can appear to look at the 

viewer in one orientation, and at somewhere to the side in another. As seen in Figure 35, This 

also lends credence to the fact that appearance-based estimation techniques are not as 

accurate as model-based techniques (Appendix C1)  
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Figure 35: Example of the Wollaston's effect (Wollaston 1824) 

 

The eye gaze to mouse movement proves slightly difficult to navigate effectively with the 

jitter of the mouse. Attempts have been made to normalise the movements of the mouse using 

PyAutoGUI’s ‘easeInOutQuad’ function (Appendix C2), yet this problem has not been fully 

eradicated. Another problem evident is that the question would be presented that if the user 

uses the left eye to left-click and right eye to right-click, what happens if they have to blink? 

This has been taken into account, and if the user’s eyes are both detected as closing at the 

same time, the program will neither perform a left-click nor a right-click. This is to prevent 

users from mis-clicking every time they have to blink (Appendix C3). 

In the initial plan for this project, an idea was included to have functionalities for a keyboard 

as well as the mouse using eye inputs. This functionality was attempted using Tkinter and the 

keyboard library to implement an on-screen keyboard, which can take inputs from the user’s 

mouse. However, once this keyboard was created, it was extremely difficult to get an 

accurate click on any of the keys included as the on-screen keys themselves were too small, 

and to display them any larger would hinder the visibility of other application of the user’s 

device and would not make for a straightforward user experience. Therefore, the decision was 

made to remove this feature and instead solely replace the mouse’s functionalities with the 

eye gaze. 

There can be instances when the user has started the mouse control portion of the program, 

but their r-squared score is low (below 0.7) meaning that accurate predictions are not being 

made. This can make it very difficult to control the mouse effectively, therefore the escape 

functionality of pressing “Shift + F5” was implemented to exit this process. (Appendix D1) 

Also, if no eye gaze is detected, the mouse will no longer be moved by eye gaze and the user 

is able to control the cursor as normal with the computer mouse. This functionality was 

implemented to avoid situations where the cursor is out to the user’s control and they can 

easily regain control of the cursor with the mouse in this scenario. Also, the eye gaze 

predictor does not make another prediction if the predicted look vector is the same as the 

previous look vector, this will save computation time and computer resources making the 

program run smoother. To improve the performance of the model, which may be a limiting 

factor on user’s devices that are not equipped with sufficient hardware, the quality of webcam 

camera input has been reduced greatly (Appendix D3). The limit of 30 frames per second has 

been applied as well as to give the model sufficient time to carry out calculations for each 

frame detected. 
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A sizeable amount of time was spent tuning the Regression CNN model to return the most 

accurate values by minimising the loss function. This process included adding and removing 

layers such as the ‘dropout layer’ (Figure 28) to minimise the loss value and finding the best 

method to predict a three-dimensional vector from an image. Also, the idea was explored to 

create three separate models, one each for the x, y, and z values in a three-dimensional vector. 

However, since the relation between each one of these values in a look vector is not zero, 

they would have to be predicted within the same model to detect the hidden links and patterns 

that lie between the x, y, and z values.  

One issue which affected the user’s view of the program and not the functionality is that the 

initial default webcam view would be flipped when the user would be viewing the feed, so to 

make the left eye and right eye section appear more intuitively by mirroring the user’s face, 

the webcam feed is flipped in the final application (Appendix D4). 

An issue with the calibration process is that the calibration points would sometimes appear 

below other programs which the user is using, making them difficult to see and to click on. 

Therefore, code which pushes all windows to the front of the user’s device, as well as 

removing their presence in the taskbar to ensure that the user is able to easily interact and 

identify all the points (Figure 32).  
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4. Results and Evaluation 

This project can be effectively evaluated based on it meeting the functional and non-

functional requirements that were set at the beginning of this dissertation (3.1.1).  

Functional requirements evaluation: 

- The user interface must minimise the number of menus to make the application remain 

accessible 

This requirement has been met with all the entire GUI of the application being in one menu 

which is launched at the beginning of the program, which increases the level of accessibility 

by allowing the user to access each process through just one click on this menu. 

- The user must be able to view their real-time eye gaze as well as past eye gaze vectors 

This requirement has also been met as well as exceeded, because the user is able to view their 

current eye gaze vector as emanating from their eyes, the middle of their face, or both. The 

past gaze vectors are all printed in the information box which allows them to access their past 

data. 

- The user must be able to see the webcam feed as well as cropped eye regions 

The webcam feed is clearly displayed at the top of the application with the two cropped eye 

regions positioned directly below, therefore this requirement has been successfully met. 

- The user must be able to calibrate the eye gaze vector to device screen at their own pace  

There are two calibration methods available for the user in this program. As per this 

requirement, the first calibration method displays 25 points around the user’s screen and there 

is no time limit for the user to look at and select these calibration points, thus the requirement 

is met. 

- The user must be able to exit the mouse movement process at any time with a key press 

This requirement has been met by allowing the user to simply close the program or press 

“Shift+F5” to exit the process of mouse movement at any time. 

- The user must be able to choose the information that is being displayed on the user 

interface 

There are two checkboxes, one for the predicted look vector to be shown and the other is the 

predicted mouse coordinate. If the user does not wish to see these pieces of information, they 

can uncheck the boxes so no more predictions are displayed textually on the UI, proving that 

this requirement is met. 

- The user must be able to see if they have performed any actions with the mouse through an 

alert 

A pop-up is displayed on the top-left of the user’s device for every left-click or right-click 

that the user performs, in addition to writing the clicks in the information box on the main 

GUI. As a result, this requirement has been successfully met.   

Non-functional requirements: 
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- The user must have good performance, given the user has sufficient hardware 

This requirement has been partially met, as this program may be taxing on weaker devices, 

yet it will still run and remain functional on these devices, just not maintain the maximum of 

30 predictions per second. 

- The user interface should be a professional colour scheme  

The user interface was chosen as a sleek grey and white to not cause eye strain to users and 

remain professional in its presentation, which meets this requirement. 

- The user should not experience any crashes/freezing during use 

For all the time this program has been run, there are error checks, yet the program has never 

frozen or crashed in the testing and evaluation process. Therefore, this requirement has been 

met successfully. 

- The user should be able to navigate to every process through just one click 

As stated in the functional requirements above, this requirement has been met through the use 

of the unique calibration method as well as the one-menu system which makes navigating the 

program extremely trivial. 

The functional requirements are important as they allow the user to successfully use the 

program to fulfil its purpose and the non-functional requirements are chosen as they ensure 

that the application perform well and is intuitive in navigation. With all these functional and 

non-functional requirements being successfully met, with some implementations going 

beyond the brief, it is fair to conclude that this application is successful in achieving its goals 

of having a machine learning model-based eye gaze tracker with human computer interaction 

capabilities. 

The methodology chosen which involved designing the processes and flowchart before the 

programming had begun for this project was successful as it allowed me to avoid errors and 

missteps in logic that would have been more likely if there was not a plan for the order of 

creation. Python and the main libraries used (Tkinter, TensorFlow, Keras, Sklearn, 

MediaPipe) were mostly well documented and had many different possible approaches 

available in addressing the requirements that were defined. Many unique approaches and 

algorithms had to be implemented for the greatest accuracy and function of the application 

(see 3.2.3). 

Many more tests could be carried out on how to make a more lightweight Regression CNN 

model that runs on less powerful hardware, as well as removing the need to make two 

predictions (one for each eye) and instead just predict the three-dimensional gaze vector on 

just one eye image and still remain accurate.  

Many models were created during the attempts to make an accurate eye gaze tracker, which 

was settled upon using a batch size of 8 and 50 epochs for the regression CNN model. This 

determination was made using grid search (Appendix G1) which is a technique used to find 

the best parameters to use in the machine learning model for batch size and epochs. This is 

completed by exhaustively searching through all the combinations of hyperparameters to 

determine the best combination. The grid search I had completed took a full 24 hours to 

complete (Appendix G1) yet was worth the computation power required to determine the 
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very best combination of hyperparameter to minimise mean squared error with 50 epochs and 

8 batch size. The library sklearn was utilised for this process by importing GridSearchCV. 

This was a very import test to carry out in evaluating at which batch size demonstrates 

optimal convergence for this use case.  

For the linear regression model to determine how accurate the model is a R-squared score is 

calculated based on the accuracy of the user’s calculation as well as the regression CNN 

model. For the R-squared score, above 0.7 is required for the program to move the cursor to 

an accurate screen coordinate based on the predicted eye gaze vector. This value represents 

how well a model fits the data between -1 and 1, where 1 is an ideal fit, and is calculated 

using the sklearn library in python (Appendix H1). This value is largely dependent on the 

user’s calibration technique and how close they follow the instructions of looking at the 

calibration point. 

The loss value for the Regression model was 0.07 after it was run for 50 epochs on the 

SynthesEyes database (stored as .npz files and Pandas data frames), with a random 80% of 

the database as training, 10% as validation, and final 10% as testing data. This value for mean 

squared error is incredible in this context and lends heavy credence to the fact that accurate 

gaze estimation can be completed using machine learning and a normal webcam. Albeit, 

concerns of overfitting and over generalisation are present in such a low loss value, 

tremendous precautions have been taken to prevent overfitting such as dropouts, shuffled 

database, and large enough training data. Therefore, it is fair to evaluate that the model is 

extremely effective in its purpose of estimating gaze direction from an input image of an eye 

region. 

Showcased in Appendix H3 is a graph showing the frequency of each predicted look vector 

value. As is evident, many of the values are between -1 and 0.5 for [x,y,z] showing that there 

is a definite trend in the dataset to look vector with those values in a specific direction. 

Appendix H4 shows a table that is printed which displays each image name in the dataset 

alongside the predictions made for each one and the actual values. An example of what the 

training process looks like in the terminal is shown in Appendix H5, where the time estimated 

to complete training the model and current loss function for a new model is shown.The 

predictions from Appendix H4 are averaged out in Appendix H6 which shows that the 

average difference for [x,y,z] from the actual value to the predicted value (using the trained 

model) is ‘Avg_XYZ:  [0.05931443 0.05654137 0.04200025]’. Evidently, this model works 

phenomenally on just a webcam feed to make prediction as the average predicted value for x, 

y, and z is on average within only 0.06 of the actual value making the model extremely 

accurate. 
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5. Conclusions and Future Work 

5.1 Conclusion 
In review, in just 12 weeks I was effectively able to plan, build, deploy, and test a prototype 

that tracks eye gaze in real-time using a normal webcam. This was taken further then the 

initial brief by showcasing and implementing a use case for the eye gaze tracker as an input 

device which replaces the functionalities of a mouse. The reason for this implementation was 

that I aimed to provide an inexpensive and accessible method in which to navigate devices 

for those with disabilities and motor impairments. I have successfully managed to reach a 

high level of accuracy in the eye gaze estimation with minimal loss, even in environments 

where the user’s face is obscured or in non-ideal lighting conditions. All of the project’s aims 

have been met (1.2) as well as the requirements, which means that the approach to this 

project was made correctly, with detailed planning and preparation before completing the 

programming aspect. 

Evaluating the many libraries for functionalities such as image processing as well as their 

quality of documentation was completed in order to select the important libraries require in 

Python such as MediaPipe, OpenCV, Keras, and Tkinter. I have found in my program, that 

accurate low-cost webcam eye gaze tracking is entirely possible now with the presence of 

large databases, such as SynthesEyes, to train a Regression CNN model effectively. Since 

this process was fully completed in only 12 weeks, the possibilities this application could 

have and improvements in both accuracy and performance will be amazing to see given 

enough time and resources.  

More importantly, this dissertation is an attempt at bridging the gaps and unjust forms of 

discrimination that disabled people face as the world improves the technological devices 

available, yet neglect viable methods for everyone, regardless of ability and level of wealth, 

to use them. In conclusion, this project demonstrates how breakthroughs in machine learning 

methods can be used to create low-cost solutions to address inequalities in our society, not the 

least of which is allowing disabled people to use modern devices using eye gaze tracking in 

conjunction with human computer interaction. 
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5.2 Future Work 
There are many future applications for this dissertation, in which many features can be added 

with the goal to optimise and improve the usefulness and efficacy of low-cost webcam eye 

gaze tracking. For example, this project can be extended with purposes in employee 

monitoring software, where during meetings or work hours, companies can view if their 

employees are concentrating on their workstation or focused elsewhere. However, ethical 

issues of over intrusiveness and lack of privacy are raised from these kinds of bossware 

which is why there was no further research into this area in this project. 

The implementation of an on-screen keyboard was discussed and evaluated in this 

dissertation as well as the initial plan. However, many issues were present in this idea as 

discussed in 3.2.4. Yet I believe functionality for an on-screen virtual keyboard can be 

implemented if the keyboard is a pop-up whenever the user enters a textbox, similar to how 

mobile devices work with their keyboards. The main limiting factor hindering this from 

becoming a reality is that the accuracy of the eye gaze tracker and the subsequent cursor must 

be extremely accurate to select an intended letter on a 26-letter keyboard. With the current r-

squared error, this is not feasible to implement into the project at this current state.  

If I had a further 12 weeks to complete this dissertation, I would also work on further 

improving the moving calibration system which I had implemented to be more accessible. 

This would be changed by having a passive calibration system in the background instead of 

an explicit one where the user would have to follow points. For example, assumptions can be 

taken into account that if the user is moving the mouse and clicking with the cursor, there is a 

high likelihood that they are looking at the cursor while they complete these actions. So 

passive calibration values can be taken just while the user is using the interface and device 

instead of completing an entire dedicated calibration process. An interesting research branch 

would be to see if this method is at all effective at calibration if more time was afforded. I 

would also like to stretch the limits of MediaPipe to see how far the users can be placed away 

from the webcam and how exactly certain environment changes affect the accuracy of the eye 

detection functionality. 

Another implementation idea which could easily be extended into this application is the 

ability to view heatmaps of your eye gaze, on both three-dimensional world space, as well as 

on the device screen itself. This would allow users to simply view where they spend the most 

time looking and this functionality could have further functionalities such as if the eye gaze 

vector is detected as downwards for extended periods of time, the application could remind 

the user to fix their posture and such. This feature would lend greatly to the goal of this 

project which is to aid people with disabilities to remain comfortable in using these devices. I 

would also look for a way to smooth the mouse movements beyond 

‘tween=pyautogui.easeInOutQuad’ which did not improve the jitter in the mouse’s 

movements substantially. Multithreading would also be implemented for the concurrent 

processes that occur in this program, such as predictions and automatic calibration methods, 

to ensure that they run more effectively with higher performance on lower-end devices. 
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6. Reflection 

In reflection, this project has allowed me to develop my skills of planning, implementing, 

testing, and then acting upon my evaluation to produce a completed application that has 

successfully met the project aim and user requirements. Throughout the development of this 

dissertation, I have learnt critical skills in how importantly honesty and reflection is upon my 

own work, in order to assess whether a method to complete a process is the best way requires 

an introspective look into my own thought process to evaluate with sincerity. My familiarity 

with libraries in Python such as Keras, Tkinter, and MediaPipe has tremendously improved 

and I have now achieved a greater complete understanding of the boundaries which each one 

of these entails and how to overcome them through devising unique solutions.  

Furthermore, I have gained a greater sense of perspective on how ostracised people can 

become due to them not being able to interact with a popular devices and software. Eye gaze 

tracking is an incredible feature with outstanding applications in a wide variety of fields such 

as virtual reality, gaming, and productivity. The highlighted importance of eyes and the active 

role they play in our society in communicating emotions and attention would not be possible 

without the extent of research and background reading that I have conducted. Utilising the 

wealth of resources and very recent research conducted in this very field has illustrated to me 

that eye gaze tracking is a rapidly developing field in which the benefits to the technology in 

our everyday lives is exciting. However, I have recognised that a pitfall of mine is being 

overambitious in the introduction of extra features in this program such as keyboards, which 

may have impacted the results of the final application, yet granted me a greater understanding 

for the limits my implementation may have. 

Overall, through great introspection and by challenging my own knowledge of topics such as 

eye gaze tracking, I was able to learn much more about the huge applications and prospects 

that this technology possesses. Throughout this process, I had been afforded the opportunity 

to be able to make assumptions and decisions on how to solve the problem of eye gaze 

tracking through my own approach. As a result of this, I am able to assess if the 

methodologies chosen were accurate and learn from these experiences both encountered 

problems and triumphs, to make more informed decisions in the future and plan ahead more 

effectively. 
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Appendices 

Appendix A: 

Image A1: 

self.selected_display = tk.IntVar(value=1) 

self.plot_eyes_radiobutton = tk.Radiobutton(plot_checkbox_frame, text="Eyes 

Gaze", font=("Helvetica", 10), bd=0, variable=self.selected_display, value=1) 

self.plot_eyes_radiobutton.pack(side=tk.LEFT, pady=5, padx=5) 

 

self.plot_face_radiobutton = tk.Radiobutton(plot_checkbox_frame, text="Face 

Gaze", font=("Helvetica", 10), bd=0, variable=self.selected_display, value=2) 

self.plot_face_radiobutton.pack(side=tk.LEFT, pady=5, padx=5) 

 

self.plot_both_radiobutton = tk.Radiobutton(plot_checkbox_frame, text="Display 

Both", font=("Helvetica", 10), bd=0, variable=self.selected_display, value=3) 

self.plot_both_radiobutton.pack(side=tk.LEFT, pady=5, padx=5) 
 Radio button Implementation for Displayed Gaze 

Image A2: 

 

Radio Button 'Face Gaze' Selected Displaying Predicted Eye Gaze Vector Visualisation from User's 

Center of Face 

Image A3 
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Radio Button ‘Display Both’ Selected Displaying Predicted Eye Gaze Vector Visualisation from 

User's Center of Face and Eyes 

Image A4 

 

 

Appendix B: 

Image B1 

def get_x_y(df): 

    x = [] 

    y = [] 

    for name in df['name']: 

        loaded_npz = np.load(name) 

 

        pic = loaded_npz['pic_data'] 

        x.append(pic) 

 

        vector_x, vector_y, vector_z = loaded_npz['vector_in'] 

        y.append([vector_x, vector_y, vector_z]) 

 

    x = np.array(x) 

    y = np.array(y) 

    return x, y 

 

Image B2 
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Appendix C: 

Image C1 (Modi and Singh, 2021) 

 

Image C2 

def move_mouse_to_point(self, point): 

Evaluation criteria Model-based Appearance-based Hybrid 

Setup complexity High Low Low 

System calibration Fully calibrated ✗ Intermediate 

Hardware (camera) 

requirements 

Two or more ordinary camera Ordinary 

web camera 

Implicit robustness 

to head 

movements 

medium–high Low Low 

Implicit robustness 

to varying 

illumination 

medium–high Low Low 

Gaze estimation 

accuracy error 

low (<1°) (>2°) high (1–3°) high 
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        pyautogui.moveTo(point[0][0], point[0][1], 

tween=pyautogui.easeInOutQuad) 

 

Image C3 

if reRatio > 6.5 and leRatio < 6.5: 

                    pyautogui.rightClick() 

                    self.show_message("Right Click") 

                    #print("RIGHT EYE BLINKING") 

                elif leRatio > 6.5 and reRatio < 6.5: 

                    pyautogui.leftClick() 

                    self.show_message("Left Click") 

                    #print("LEFT EYE BLINKING") 

 

Appendix D: 

Image D1 

keyboard.add_hotkey('shift+f5', self.disable_mouse) 

 

Image D2 

old_look_vector = self.look_vector 

if old_look_vector != self.look_vector: 

#make predictions 

 

Image D3 

cap = cv2.VideoCapture(0) 

cap.set(cv2.CAP_PROP_FPS, 30) 

cap.set(3, 64) 

cap.set(4, 48) 

 

Image D4 

averaged_look_vector = [(x + y) / 2 for x, y in zip(left_look_vector, 

right_look_vector)] 

 

Appendix E: 

Image E1 
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Appendix F: 

Image F1 

 

Image F2 
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Appendix G: 

Image G1 

from sklearn.model_selection import GridSearchCV 

 

def get_grid_search(X_train, y_train, X_val, y_val): 

    model = KerasRegressor(build_fn=create_model, X_train=X_train, 

y_train=y_train, X_val=X_val, y_val=y_val, verbose=1) 

 

    #Define the grid search parameters 

    batch_size = [4, 8, 16] 

    epochs = [10, 20, 50] 

    param_grid = dict(batch_size=batch_size, epochs=epochs) 

 

    #Perform the grid search 

    grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1, 

cv=3) 

    grid_result = grid.fit(X_train, y_train) 

 

    #Print the best parameters 

    print("Best: %f using %s" % (grid_result.best_score_, 

grid_result.best_params_)) 

 

    return grid_result 

 

Appendix H: 

Image H1 

screen_model = LinearRegression() 

 

#Train the model 

screen_model.fit(X_train, y_train) 

 

#Evaluate the model (get r-squared score) 

score = screen_model.score(X_test, y_test) 

 

Image H2 
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Image H3 

 

Image H4 
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Image H5 

 

Image H6 
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